An Operator Extension of Čebyšev Inequality
Autor: | Moradi Hamid Reza, Omidvar Mohsen Erfanian, Dragomir Silvestru Sever |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 25, Iss 2, Pp 135-147 (2017) |
Druh dokumentu: | article |
ISSN: | 1844-0835 2017-0025 |
DOI: | 10.1515/auom-2017-0025 |
Popis: | Some operator inequalities for synchronous functions that are related to the čebyšev inequality are given. Among other inequalities for synchronous functions it is shown that ∥ø(f(A)g(A)) - ø(f(A))ø(g(A))∥ ≤ max{║ø(f2(A)) - ø2(f(A))║, ║ø)G2(A)) - ø2(g(A))║} where A is a self-adjoint and compact operator on B(ℋ ), f, g ∈ C (sp (A)) continuous and non-negative functions and ø: B(ℋ ) → B(ℋ ) be a n-normalized bounded positive linear map. In addition, by using the concept of quadruple D-synchronous functions which is generalizes the concept of a pair of synchronous functions, we establish an inequality similar to čebyšev inequality. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |