An Operator Extension of Čebyšev Inequality

Autor: Moradi Hamid Reza, Omidvar Mohsen Erfanian, Dragomir Silvestru Sever
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 25, Iss 2, Pp 135-147 (2017)
Druh dokumentu: article
ISSN: 1844-0835
2017-0025
DOI: 10.1515/auom-2017-0025
Popis: Some operator inequalities for synchronous functions that are related to the čebyšev inequality are given. Among other inequalities for synchronous functions it is shown that ∥ø(f(A)g(A)) - ø(f(A))ø(g(A))∥ ≤ max{║ø(f2(A)) - ø2(f(A))║, ║ø)G2(A)) - ø2(g(A))║} where A is a self-adjoint and compact operator on B(ℋ ), f, g ∈ C (sp (A)) continuous and non-negative functions and ø: B(ℋ ) → B(ℋ ) be a n-normalized bounded positive linear map. In addition, by using the concept of quadruple D-synchronous functions which is generalizes the concept of a pair of synchronous functions, we establish an inequality similar to čebyšev inequality.
Databáze: Directory of Open Access Journals