Sex differences in machine learning computed tomography-derived fractional flow reserve

Autor: Mahmoud Al Rifai, Ahmed Ibrahim Ahmed, Yushui Han, Jean Michel Saad, Talal Alnabelsi, Faisal Nabi, Su Min Chang, Myra Cocker, Chris Schwemmer, Juan C. Ramirez-Giraldo, William A. Zoghbi, John J. Mahmarian, Mouaz H. Al-Mallah
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Scientific Reports, Vol 12, Iss 1, Pp 1-9 (2022)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-022-17875-9
Popis: Abstract Coronary computed tomography angiography (CCTA) derived machine learning fractional flow reserve (ML-FFRCT) can assess the hemodynamic significance of coronary artery stenoses. We aimed to assess sex differences in the association of ML-FFRCT and incident cardiovascular outcomes. We studied a retrospective cohort of consecutive patients who underwent clinically indicated CCTA and single photon emission computed tomography (SPECT). Obstructive stenosis was defined as ≥ 70% stenosis severity in non-left main vessels or ≥ 50% in the left main coronary. ML-FFRCT was computed using a machine learning algorithm with significant stenosis defined as ML-FFRCT
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje