Autor: |
Jonathan R. Erlich, Eunice E. To, Raymond Luong, Felicia Liong, Stella Liong, Osezua Oseghale, Mark A. Miles, Steven Bozinovski, Robert D. Brooks, Ross Vlahos, Stanley Chan, John J. O’Leary, Doug A. Brooks, Stavros Selemidis |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Antioxidants, Vol 11, Iss 8, p 1488 (2022) |
Druh dokumentu: |
article |
ISSN: |
2076-3921 |
DOI: |
10.3390/antiox11081488 |
Popis: |
Macrophages undergo a metabolic switch from oxidative phosphorylation to glycolysis when exposed to gram-negative bacterial lipopolysaccharide (LPS), which modulates antibacterial host defence mechanisms. Here, we show that LPS treatment of macrophages increased the classical oxidative burst response via the NADPH oxidase (NOX) 2 enzyme, which was blocked by 2-deoxyglucose (2-DG) inhibition of glycolysis. The inhibition of the pentose phosphate pathway with 6-aminonicotinamide (6-AN) also suppressed the LPS-induced increase in NOX2 activity and was associated with a significant reduction in the mRNA expression of NOX2 and its organizer protein p47phox. Notably, the LPS-dependent enhancement in NOX2 oxidase activity was independent of both succinate and mitochondrial reactive oxygen species (ROS) production. LPS also increased type I IFN-β expression, which was suppressed by 2-DG and 6-AN and, therefore, is dependent on glycolysis and the pentose phosphate pathway. The type I IFN-β response to LPS was also inhibited by apocynin pre-treatment, suggesting that NOX2-derived ROS promotes the TLR4-induced response to LPS. Moreover, recombinant IFN-β increased NOX2 oxidase-dependent ROS production, as well as NOX2 and p47phox expression. Our findings identify a previously undescribed molecular mechanism where both glycolysis and the pentose phosphate pathway are required to promote LPS-induced inflammation in macrophages. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|