Autor: |
Yuen-Fen Tan, Ling-Wei Hii, Wei-Meng Lim, Soon-Keng Cheong, Chee-Onn Leong, Maxine Swee-Li Yee, Chun-Wai Mai |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-80646-1 |
Popis: |
Abstract Small interfering RNAs (siRNA) technology has emerged as a promising therapeutic tool for human health conditions like cancer due to its ability to regulate gene silencing. Despite FDA-approved, their delivery remains localized and limiting their systemic use. This study used single-walled carbon nanotubes (SWNTs) functionalized with polyethylene glycolated (PEGylated) phospholipids (PL-PEG) derivatives for systemic siRNA delivery. We developed an siRNA systemic delivery vehicle (SWNT-siRNA) by conjugating SWNT functionalized with PL-PEG containing either amine (PA) or maleimide (MA). The functionalized SWNT with a lower molecular weight of PA produced the SWNT-siRNA conjugate system with the highest stability and high siRNA loading quantity. The system delivered siRNA to a panel of tumour cell lines of different organs (i.e. HeLa, H1299 and MCF-7) and a non-cancerous human embryonic kidney 293 cells (HEK293T) with high biocompatibility and low toxicity. The cellular uptake of SWNT-siRNA conjugates by epithelial cells was found to be energy dependent. Importantly, the presence of P-glycoprotein, a marker for drug resistance, did not inhibit SWNT-mediated siRNA delivery. Mouse xenograft model further confirmed the potential of SWNT-siRNA conjugates with a significant gene knock-down without signs of acute toxicity. These findings pave the way for potential gene therapy applications using SWNTs as delivery vehicles. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|