Autor: |
Marson Putra, Shaunik Sharma, Meghan Gage, Grace Gasser, Andy Hinojo-Perez, Ashley Olson, Adriana Gregory-Flores, Sreekanth Puttachary, Chong Wang, Vellareddy Anantharam, Thimmasettappa Thippeswamy |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Neurobiology of Disease, Vol 133, Iss , Pp - (2020) |
Druh dokumentu: |
article |
ISSN: |
1095-953X |
DOI: |
10.1016/j.nbd.2019.03.031 |
Popis: |
Chemical nerve agents (CNA) are increasingly becoming a threat to both civilians and military personnel. CNA-induced acute effects on the nervous system have been known for some time and the long-term consequences are beginning to emerge. In this study, we used diisopropylfluorophosphate (DFP), a seizurogenic CNA to investigate the long-term impact of its acute exposure on the brain and its mitigation by an inducible nitric oxide synthase (iNOS) inhibitor, 1400W as a neuroprotectant in the rat model. Several experimental studies have demonstrated that DFP-induced seizures and/or status epilepticus (SE) causes permanent brain injury, even after the countermeasure medication (atropine, oxime, and diazepam). In the present study, DFP-induced SE caused a significant increase in iNOS and 3-nitrotyrosine (3-NT) at 24 h, 48 h, 7d, and persisted for a long-term (12 weeks post-exposure), which led to the hypothesis that iNOS is a potential therapeutic target in DFP-induced brain injury. To test the hypothesis, we administered 1400W (20 mg/kg, i.m.) or the vehicle twice daily for the first three days of post-exposure. 1400W significantly reduced DFP-induced iNOS and 3-NT upregulation in the hippocampus and piriform cortex, and the serum nitrite levels at 24 h post-exposure. 1400W also prevented DFP-induced mortality in |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|