Effects on Metallization of n+-Poly-Si Layer for N-Type Tunnel Oxide Passivated Contact Solar Cells

Autor: Qinqin Wang, Beibei Gao, Wangping Wu, Kaiyuan Guo, Wei Huang, Jianning Ding
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Materials, Vol 17, Iss 11, p 2747 (2024)
Druh dokumentu: article
ISSN: 1996-1944
DOI: 10.3390/ma17112747
Popis: Thin polysilicon (poly-Si)-based passivating contacts can reduce parasitic absorption and the cost of n-TOPCon solar cells. Herein, n+-poly-Si layers with thicknesses of 30~100 nm were fabricated by low-pressure chemical vapor deposition (LPCVD) to create passivating contacts. We investigated the effect of n+-poly-Si layer thickness on the microstructure of the metallization contact formation, passivation, and electronic performance of n-TOPCon solar cells. The thickness of the poly-Si layer significantly affected the passivation of metallization-induced recombination under the metal contact (J0,metal) and the contact resistivity (ρc) of the cells. However, it had a minimal impact on the short-circuit current density (Jsc), which was primarily associated with corroded silver (Ag) at depths of the n+-poly-Si layer exceeding 40 nm. We introduced a thin n+-poly-Si layer with a thickness of 70 nm and a surface concentration of 5 × 1020 atoms/cm3. This layer can meet the requirements for low J0,metal and ρc values, leading to an increase in conversion efficiency of 25.65%. This optimized process of depositing a phosphorus-doped poly-Si layer can be commercially applied in photovoltaics to reduce processing times and lower costs.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje