Autor: |
Achache Mahdi, Tebbani Hossni |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2020, Iss 124,, Pp 1-24 (2020) |
Druh dokumentu: |
article |
ISSN: |
1072-6691 |
Popis: |
We consider the regularity for the non-autonomous Cauchy problem $$ u'(t) + A(t) u(t) = f(t)\quad (t \in [0, \tau]), \quad u(0) = u_0. $$ The time dependent operator A(t) is associated with (time dependent) sesquilinear forms on a Hilbert space $\mathcal{H}$. We prove the maximal regularity result in temporally weighted L^2-spaces and other regularity properties for the solution of the problem under minimal regularity assumptions on the forms and the initial value u_0. Our results are motivated by boundary value problems. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|