A Baseline Study of the Event-Shape and Multiplicity Dependence of Chemical Freeze-Out Parameters in Proton-Proton Collisions at \( {\sqrt{s}} \) = 13 TeV Using PYTHIA8

Autor: Rutuparna Rath, Arvind Khuntia, Sushanta Tripathy, Raghunath Sahoo
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Physics, Vol 2, Iss 4, Pp 679-694 (2020)
Druh dokumentu: article
ISSN: 2624-8174
DOI: 10.3390/physics2040040
Popis: The event-shape and multiplicity dependence of the chemical freeze-out temperature (Tch), freeze-out radius (R), and strangeness saturation factor (γs) are obtained by studying the particle yields from the PYTHIA8 Monte Carlo event generator in proton-proton (pp) collisions at the centre-of-mass s = 13 TeV. Spherocity is one of the transverse event-shape techniques to distinguish jetty and isotropic events in high-energy collisions and helps in looking into various observables in a more differential manner. In this study, spherocity classes are divided into three categories, namely (i) spherocity integrated, (ii) isotropic, and (iii) jetty. The chemical freeze-out parameters are extracted using a statistical thermal model as a function of the spherocity class and charged particle multiplicity in the canonical, strangeness canonical, and grand canonical ensembles. A clear observation of the multiplicity and spherocity class dependence of Tch, R, and γs is observed. A final state multiplicity, Nch≥ 30 in the forward multiplicity acceptance of the ALICE detector appears to be a thermodynamic limit, where the freeze-out parameters become almost independent of the ensembles. This study plays an important role in understanding the particle production mechanism in high-multiplicity pp collisions at the Large Hadron Collider (LHC) energies in view of a finite hadronic phase lifetime in small systems.
Databáze: Directory of Open Access Journals