Complementary equations: a fractional differential equation and a Volterra integral equation

Autor: Leigh Becker, Theodore Burton, Ioannis Purnaras
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2015, Iss 12, Pp 1-24 (2015)
Druh dokumentu: article
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2015.1.12
Popis: It is shown that a continuous, absolutely integrable function satisfies the initial value problem \[ D^{q}x(t) = f(t,x(t)), \qquad \lim_{t \to 0^+} t^{1-q}x(t) = x^{0} \qquad (0 < q < 1) \] on an interval $(0, T]$ if and only if it satisfies the Volterra integral equation \[ x(t) = x^{0}t^{q-1}+\frac{1}{\Gamma (q)}\int_{0}^{t}(t-s)^{q-1}f(s, x(s))\,ds \] on this same interval. In contradistinction to established existence theorems for these equations, no Lipschitz condition is imposed on $f(t,x)$. Examples with closed-form solutions illustrate this result.
Databáze: Directory of Open Access Journals