Prairie Dog Optimization Algorithm with deep learning assisted based Aerial Image Classification on UAV imagery

Autor: Amal K. Alkhalifa, Muhammad Kashif Saeed, Kamal M. Othman, Shouki A. Ebad, Mohammed Alonazi, Abdullah Mohamed
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Heliyon, Vol 10, Iss 18, Pp e37446- (2024)
Druh dokumentu: article
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2024.e37446
Popis: This study presents a Prairie Dog Optimization Algorithm with a Deep learning-assisted Aerial Image Classification Approach (PDODL-AICA) on UAV images. The PDODL-AICA technique exploits the optimal DL model for classifying aerial images into numerous classes. In the presented PDODL-AICA technique, the feature extraction procedure is executed using the EfficientNetB7 model. Besides, the hyperparameter tuning of the EfficientNetB7 technique uses the PDO model. The PDODL-AICA technique uses a convolutional variational autoencoder (CVAE) model to detect and classify aerial images. The performance study of the PDODL-AICA model is implemented on a benchmark UAV image dataset. The experimental values inferred the authority of the PDODL-AICA approach over recent models in terms of dissimilar measures.
Databáze: Directory of Open Access Journals