Autor: |
Savneet Kaur, Erik Larsen, James Harper, Bharat Purandare, Ahmet Uluer, Mohammad Adrian Hasdianda, Nikita Arun Umale, James Killeen, Edward Castillo, Sunit Jariwala |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Journal of Medical Internet Research, Vol 25, p e44410 (2023) |
Druh dokumentu: |
article |
ISSN: |
1438-8871 |
DOI: |
10.2196/44410 |
Popis: |
BackgroundVocal biomarker–based machine learning approaches have shown promising results in the detection of various health conditions, including respiratory diseases, such as asthma. ObjectiveThis study aimed to determine whether a respiratory-responsive vocal biomarker (RRVB) model platform initially trained on an asthma and healthy volunteer (HV) data set can differentiate patients with active COVID-19 infection from asymptomatic HVs by assessing its sensitivity, specificity, and odds ratio (OR). MethodsA logistic regression model using a weighted sum of voice acoustic features was previously trained and validated on a data set of approximately 1700 patients with a confirmed asthma diagnosis and a similar number of healthy controls. The same model has shown generalizability to patients with chronic obstructive pulmonary disease, interstitial lung disease, and cough. In this study, 497 participants (female: n=268, 53.9%; |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|