Autor: |
Junyi Song, Chuanyang Liu, Baoshan Li, Liangcheng Liu, Ling Zeng, Zonghuang Ye, Ting Mao, Wenjian Wu, Biru Hu |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Frontiers in Cell and Developmental Biology, Vol 10 (2022) |
Druh dokumentu: |
article |
ISSN: |
2296-634X |
DOI: |
10.3389/fcell.2022.862011 |
Popis: |
Reflectin proteins are natural copolymers consisting of repeated canonical domains. They are located in a biophotonic system called Bragg lamellae and manipulate the dynamic structural coloration of iridocytes. Their biological functions are intriguing, but the underlying mechanism is not fully understood. Reflectin A1, A2, B1, and C were found to present distinguished cyto-/nucleoplasmic localization preferences in the work. Comparable intracellular localization was reproduced by truncated reflectin variants, suggesting a conceivable evolutionary order among reflectin proteins. The size-dependent access of reflectin variants into the nucleus demonstrated a potential model of how reflectins get into Bragg lamellae. Moreover, RfA1 was found to extensively interact with the cytoskeleton, including its binding to actin and enrichment at the microtubule organizing center. This implied that the cytoskeleton system plays a fundamental role during the organization and transportation of reflectin proteins. The findings presented here provide evidence to get an in-depth insight into the evolutionary processes and working mechanisms of reflectins, as well as novel molecular tools to achieve tunable intracellular transportation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|