Atmospheric Boundary Layer Wind Profile Estimation Using Neural Networks, Mesoscale Models, and LiDAR Measurements
Autor: | Adrián García-Gutiérrez, Deibi López, Diego Domínguez, Jesús Gonzalo |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Sensors, Vol 23, Iss 7, p 3715 (2023) |
Druh dokumentu: | article |
ISSN: | 1424-8220 82741808 |
DOI: | 10.3390/s23073715 |
Popis: | This paper introduces a novel methodology that estimates the wind profile within the ABL by using a neural network along with predictions from a mesoscale model in conjunction with a single near-surface measurement. A major advantage of this solution compared to other solutions available in the literature is that it requires only near-surface measurements for prediction once the neural network has been trained. An additional advantage is the fact that it can be potentially used to explore the time evolution of the wind profile. Data collected by a LiDAR sensor located at the University of León (Spain) is used in the present research. The information obtained from the wind profile is valuable for multiple applications, such as preliminary calculations of the wind asset or CFD modeling. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |