Autor: |
Gregory Giuliani, Denisa Rodila, Nathan Külling, Ramona Maggini, Anthony Lehmann |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Land, Vol 11, Iss 5, p 615 (2022) |
Druh dokumentu: |
article |
ISSN: |
2073-445X |
DOI: |
10.3390/land11050615 |
Popis: |
High spatial and thematic resolution of Land Use/Cover (LU/LC) maps are central for accurate watershed analyses, improved species, and habitat distribution modeling as well as ecosystem services assessment, robust assessments of LU/LC changes, and calculation of indices. Downscaled LU/LC maps for Switzerland were obtained for three time periods by blending two inputs: the Swiss topographic base map at a 1:25,000 scale and the national LU/LC statistics obtained from aerial photointerpretation on a 100 m regular lattice of points. The spatial resolution of the resulting LU/LC map was improved by a factor of 16 to reach a resolution of 25 m, while the thematic resolution was increased from 29 (in the base map) to 62 land use categories. The method combines a simple inverse distance spatial weighting of 36 nearest neighbors’ information and an expert system of correspondence between input base map categories and possible output LU/LC types. The developed algorithm, written in Python, reads and writes gridded layers of more than 64 million pixels. Given the size of the analyzed area, a High-Performance Computing (HPC) cluster was used to parallelize the data and the analysis and to obtain results more efficiently. The method presented in this study is a generalizable approach that can be used to downscale different types of geographic information. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|