Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations

Autor: W. Wang, R. van der A, J. Ding, M. van Weele, T. Cheng
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Atmospheric Chemistry and Physics, Vol 21, Pp 7253-7269 (2021)
Druh dokumentu: article
ISSN: 1680-7316
1680-7324
DOI: 10.5194/acp-21-7253-2021
Popis: Ground-level ozone (O3) pollution has been steadily getting worse in most parts of eastern China during the past 5 years. The non-linearity of O3 formation with its precursors like nitrogen oxides (NOx= NO + NO2) and volatile organic compounds (VOCs) are complicating effective O3 abatement plans. The diagnosis from space-based observations, i.e. the ratio of formaldehyde (HCHO) columns to tropospheric NO2 columns (HCHO / NO2), has previously been proved to be highly consistent with our current understanding of surface O3 chemistry. HCHO / NO2 ratio thresholds distinguishing O3 formation sensitivity depend on regions and O3 chemistry interactions with aerosol. To shed more light on the current O3 formation sensitivity over China, we have derived HCHO / NO2 ratio thresholds by directly connecting satellite-based HCHO / NO2 observations and ground-based O3 measurements over the major Chinese cities in this study. We find that a VOC-limited regime occurs for HCHO / NO2 < 2.3, and a NOx-limited regime occurs for HCHO / NO2 > 4.2. The HCHO / NO2 between 2.3 and 4.2 reflects the transition between the two regimes. Our method shows that the O3 formation sensitivity tends to be VOC-limited over urban areas and NOx-limited over rural and remote areas in China. We find that there is a shift in some cities from the VOC-limited regime to the transitional regime that is associated with a rapid drop in anthropogenic NOx emissions, owing to the widely applied rigorous emission control strategies between 2016 and 2019. This detected spatial expansion of the transitional regime is supported by rising surface O3 concentrations. The enhanced O3 concentrations in urban areas during the COVID-19 lockdown in China indicate that a protocol with simultaneous anthropogenic NOx emissions and VOC emissions controls is essential for O3 abatement plans.
Databáze: Directory of Open Access Journals