Pan-cancer analysis demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction

Autor: Linda Kachuri, Rebecca E. Graff, Karl Smith-Byrne, Travis J. Meyers, Sara R. Rashkin, Elad Ziv, John S. Witte, Mattias Johansson
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-020-19600-4
Popis: Predicting cancer risk requires large datasets and sophisticated models. Here the authors integrate polygenic risk scores and modifiable risk factors for multiple cancers in the UK Biobank, improving general risk prediction and distinguishing cases where genetic or lifestyle factors have stronger associations.
Databáze: Directory of Open Access Journals