The first spatio-temporal study of the microplastics and meso–macroplastics transport in the Romanian Danube

Autor: Ionut Procop, Madalina Calmuc, Sebastian Pessenlehner, Cristina Trifu, Alina Cantaragiu Ceoromila, Valentina Andreea Calmuc, Catalin Fetecău, Catalina Iticescu, Viorica Musat, Marcel Liedermann
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Environmental Sciences Europe, Vol 36, Iss 1, Pp 1-20 (2024)
Druh dokumentu: article
ISSN: 2190-4715
DOI: 10.1186/s12302-024-00969-8
Popis: Abstract Background Transport, accumulation, and degradation of microplastics (MiPs) in the aquatic environment represent a significant concern to the researchers and policy-makers, due to the detrimental impact on biota and human health through food ingestion. Although consistent investigations and research data are available worldwide, comparing the results is still challenging due to the need for more regulations regarding the sampling methods, analysis, and results reporting. The European regulatory efforts include studies on the MiPs transport in the western basin of the Danube River developed with active nets-based multipoint sampling methods from suspended sediments and proposed for standardization. In this context, the present study aimed to address for the first time the transport of MiPs in the Romanian sector of the Danube, starting after entering the country (Moldova Veche) and before the formation of the Danube Delta (Isaccea). Results The multipoint nets sampling procedure facilitated the collection of suspended sediments in the water columns as deep as 0.0–0.6 and 3.0–3.6 m depths and near riverbed sediments (autumn 2022 sampling) during an extensive spatio-temporal study from spring 2022 until spring 2023. The estimate of the maximum annual transport of 46–51 and 93–100 t·y−1 for MiPs and total (micro–meso–macroplastics) MPs at Moldova Veche was based on 135 collected and processed samples using 2021 water flow data. Polyethylene (58–69%) and polypropylene (21–33%) were the main polymer components in the separated fragments, foils, microfibers, and different colors spheroids of MiPs (
Databáze: Directory of Open Access Journals