Mapping mountain glaciers using an improved U-Net model with cSE
Autor: | Suzheng Tian, Yusen Dong, Ruyi Feng, Dong Liang, Lizhe Wang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | International Journal of Digital Earth, Vol 15, Iss 1, Pp 463-477 (2022) |
Druh dokumentu: | article |
ISSN: | 1753-8947 1753-8955 17538947 |
DOI: | 10.1080/17538947.2022.2036834 |
Popis: | Global warming is melting glaciers. Changes in mountain glaciers have a tremendous impact on human life. Regular identification and extraction of glaciers from satellite images are necessary. However, when studying glaciers, materials surrounding the glacier have high spectral similarity to glaciers and are easily misclassified in the identification process. Therefore, in this study of glacier extraction, we used an improved U-Net model (a channel-attention U-Net) to map glaciers. The model was trained on Landsat 8 Operational Land Imager (OLI) data and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), and was tested on glaciers in the Pamir Plateau. The results show that the channel-attention U-Net identifies glaciers with relatively high accuracy compared to U-Net and GlacierNet. The obtained results were fine-tuned by the conditional random field model, effectively reducing background misidentification. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |