Autor: |
Ayman Chaouki, Stephen Hardiman, Christian Schmidt, Emmanuel Sérié, Joachim de Lataillade |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Journal of Finance and Data Science, Vol 6, Iss , Pp 16-30 (2020) |
Druh dokumentu: |
article |
ISSN: |
2405-9188 |
DOI: |
10.1016/j.jfds.2020.06.002 |
Popis: |
Can deep reinforcement learning algorithms be exploited as solvers for optimal trading strategies? The aim of this work is to test reinforcement learning algorithms on conceptually simple, but mathematically non-trivial, trading environments. The environments are chosen such that an optimal or close-to-optimal trading strategy is known. We study the deep deterministic policy gradient algorithm and show that such a reinforcement learning agent can successfully recover the essential features of the optimal trading strategies and achieve close-to-optimal rewards. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|