A Framework Based on Machine Learning for Analytics of Voltage Quality Disturbances

Autor: Azam Bagheri, Roger Alves de Oliveira, Math H. J. Bollen, Irene Y. H. Gu
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Energies, Vol 15, Iss 4, p 1283 (2022)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en15041283
Popis: This paper proposes a machine-learning-based framework for voltage quality analytics, where the space phasor model (SPM) of the three-phase voltages before, during, and after the event is applied as input data. The framework proceeds along with three main steps: (a) event extraction, (b) event characterization, and (c) additional information extraction. During the first step, it utilizes a Gaussian-based anomaly detection (GAD) technique to extract the event data from the recording. Principal component analysis (PCA) is adopted during the second step, where it is shown that the principal components correspond to the semi-minor and semi-major axis of the ellipse formed by the SPM. During the third step, these characteristics are interpreted to extract additional information about the underlying cause of the event. The performance of the framework was verified through experiments conducted on datasets containing synthetic and measured power quality events. The results show that the combination of semi-major axis, semi-minor axis, and direction of the major axis forms a sufficient base to characterize, classify, and eventually extract additional information from recorded event data.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje