Machine Learning and Big Data in the Impact Literature. A Bibliometric Review with Scientific Mapping in Web of Science
Autor: | Jesús López Belmonte, Adrián Segura-Robles, Antonio-José Moreno-Guerrero, María Elena Parra-González |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Symmetry, Vol 12, Iss 4, p 495 (2020) |
Druh dokumentu: | article |
ISSN: | 12040495 2073-8994 |
DOI: | 10.3390/sym12040495 |
Popis: | Combined use of machine learning and large data allows us to analyze data and find explanatory models that would not be possible with traditional techniques, which is basic within the principles of symmetry. The present study focuses on the analysis of the scientific production and performance of the Machine Learning and Big Data (MLBD) concepts. A bibliometric methodology of scientific mapping has been used, based on processes of estimation, quantification, analytical tracking, and evaluation of scientific research. A total of 4240 scientific publications from the Web of Science (WoS) have been analyzed. Our results show a constant and ascending evolution of the scientific production on MLBD, 2018 and 2019 being the most productive years. The productions are mainly in English language. The topics are variable in the different periods analyzed, where “machine-learning” is the one that shows the greatest bibliometric indicators, it is found in most of motor topics and is the one that offers the greatest line of continuity between the different periods. It can be concluded that research on MLBD is of interest and relevance to the scientific community, which focuses its studies on the branch of machine-learning. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |