Autor: |
Malgorzata J. Krawczyk, Paweł Oświęcimka, Krzysztof Kułakowski, Stanisław Drożdż |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Entropy, Vol 21, Iss 10, p 968 (2019) |
Druh dokumentu: |
article |
ISSN: |
1099-4300 |
DOI: |
10.3390/e21100968 |
Popis: |
We discuss deterministic sequences of avalanches on a directed Bethe lattice. The approach is motivated by the phenomenon of self-organized criticality. Grains are added only at one node of the network. When the number of grains at any node exceeds a threshold b, each of k out-neighbors gets one grain. The probability of an avalanche of size s is proportional to s − τ . When the avalanche mass is conserved ( k = b ), we get τ = 1 . For an application of the model to social phenomena, the conservation condition can be released. Then, the exponent τ is found to depend on the model parameters; τ ≈ l o g ( b ) / l o g ( k ) . The distribution of the time duration of avalanches is exponential. Multifractal analysis of the avalanche sequences reveals their strongly non-uniform fractal organization. Maximal value of the singularity strength α m a x in the bifractal spectrum is found to be 1 / τ . |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|