Generation of a large compressive strain wave in graphite by ultrashort-pulse laser irradiation

Autor: Xiaocui Wang, A. Jarnac, J. C. Ekström, Å. U. J. Bengtsson, F. Dorchies, H. Enquist, A. Jurgilaitis, M. N. Pedersen, C.-M. Tu, M. Wulff, J. Larsson
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Structural Dynamics, Vol 6, Iss 2, Pp 024501-024501-5 (2019)
Druh dokumentu: article
ISSN: 2329-7778
DOI: 10.1063/1.5089291
Popis: We have studied strain wave generation in graphite induced by an intense ultrashort laser pulse. The study was performed in the intensity regime above the ablation threshold of graphite. The aim was to maximize the strain and, thus, also the internal pressure (stress). Laser pulses with a 1 ps temporal duration melt the surface of graphite resulting in a molten material which initially exists at the solid density. As the molten material expands, a compressive strain wave starts propagating into the crystal below the molten layer. The strain pulse was studied with time-resolved X-ray diffraction. At a temporal delay of 100 ps after laser excitation, we observed >10% compressive strain, which corresponds to a pressure of 7.2 GPa. This strain could be reproduced by hydrodynamic simulations, which also provided a temperature map as a function of time and depth.
Databáze: Directory of Open Access Journals