Popis: |
Purpose: This study aimed to investigate differences in cervical lymph node image quality on dual-energy computed tomography (CT) scan with datasets reconstructed using filter back projection (FBP), hybrid iterative reconstruction (IR), and deep learning–based image reconstruction (DLIR) in patients with head and neck cancer. Method: Seventy patients with head and neck cancer underwent follow-up contrast-enhanced dual-energy CT examinations. All datasets were reconstructed using FBP, hybrid IR with 30 % adaptive statistical IR (ASiR-V), and DLIR with three selectable levels (low, medium, and high) at 2.5- and 0.625-mm slice thicknesses. Herein, signal, image noise, signal-to-noise ratio, and contrast-to-noise ratio of lymph nodes and overall image quality, artifact, and noise of selected regions of interest were evaluated by two radiologists. Next, cervical lymph node sharpness was evaluated using full width at half maximum. Results: DLIR exhibited significantly reduced noise, ranging from 3.8 % to 35.9 % with improved signal-to-noise ratio (11.5–105.6 %) and contrast-to-noise ratio (10.5–107.5 %) compared with FBP and ASiR-V, for cervical lymph nodes (p |