Inequalities for Approximation of New Defined Fuzzy Post-Quantum Bernstein Polynomials via Interval-Valued Fuzzy Numbers

Autor: Esma Yıldız Özkan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Symmetry, Vol 14, Iss 4, p 696 (2022)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym14040696
Popis: In this study, we introduce new defined fuzzy post-quantum Bernstein polynomials and present examples illustrating their existence. We investigate their approximation properties via interval-valued fuzzy numbers. We obtain a fuzzy Korovkin-type approximation result, and we obtain inequalities estimating the rate of fuzzy convergence for these polynomials by means of the fuzzy modulus of continuity and Lipschitz-type fuzzy functions. Lastly, we present a Voronovskaja type asymptotic result for fuzzy post-quantum Bernstein polynomials. The methods in this paper are crucial and symmetric in terms of extending the approximation results of these polynomials from the real function space to the fuzzy function space and the applicability to the other operators.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje