Effects of three surface conditioning techniques on repair bond strength of nanohybrid and nanofilled composites
Autor: | Negin Nassoohi, Haleh Kazemi, Morad Sadaghiani, Mona Mansouri, Vahid Rakhshan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Dental Research Journal, Vol 12, Iss 6, Pp 554-561 (2015) |
Druh dokumentu: | article |
ISSN: | 1735-3327 2008-0255 63474107 |
DOI: | 10.4103/1735-3327.170575 |
Popis: | Background: Repair bond strength of different composite resins has been assessed in few studies. In addition, reports on the efficacy of surface treatments are debated. Therefore, this in vitro study was conducted to evaluate the effect of three surface treatments on two nanocomposites versus a microhybrid composite. Materials and Methods: In this experimental study, 135 composite blocks (45 specimens per composite) of microhybrid (Filtek Supreme Z250, 3M ESPE, USA), nanohybrid (Filtek Supreme XT, 3M ESPE), and nanofilled (Filtek Supreme Z350, 3M ESPE) were thermocycled (5000 rounds) and then surface roughened (except in a control group of 9 specimens of three composite types). Each composite type was divided into three subgroups of surface treatments: (1) Bur abrading and phosphoric acid (PA) etching, (2) sandblasting and PA etching, and (3) hydrofluoric etching and silane application (n = 15 × 9, complying with ISO TR11405). Composite blocks were repaired with the same composite type but of a different color. Microtensile bond strength and modes of failure were analyzed statistically using two-way analyses of variance, Tukey and Chi-square tests (α = 0.05). Results: There were significant differences between three composite resins (P < 0.0001) and treatment techniques (P < 0.0001). Their interaction was nonsignificant (P = 0.228). The difference between nanofilled and nanohybrid was not significant. However, the microhybrid composite showed a significantly higher bond strength (Tukey P < 0.05). Sandblasting was significantly superior to the other two methods, which were not different from each other. Conclusion: Within the limitations of this in vitro study, it seems that microhybrid composite might have higher repair strengths than two evaluated nanocomposites. Among the assessed preparation techniques, sandblasting followed by PA etching might produce the highest bond strength. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |