Light-adaptable artificial iris with dynamically scalable pupil-aperture function by radially patterned photochromic transition control

Autor: Asad Nauman, Jun-Chan Choi, Young-Min Cho, Jae-Won Lee, Jun-Hee Na, Hak-Rin Kim
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Materials & Design, Vol 237, Iss , Pp 112515- (2024)
Druh dokumentu: article
ISSN: 0264-1275
DOI: 10.1016/j.matdes.2023.112515
Popis: The iris is an ocular organ that actively controls the size of the pupil-aperture in response to external light, thereby regulating the amount of light reaching the retina for better visual acquisition. Herein, we propose a light-adaptive pupil-scalable artificial iris for addressing human iris defects with biomimetic self-regulating light control similar to human iris actuation, which is realized by a radially gradient and reversible photoswitching of photochromic dyes doped within a biocompatible hydrogel matrix. The radial photochromic switching of light transmissions was achieved by the gradient patterning of the crosslinking density of the hydrogel matrix using a near-infrared light-absorbing photomask that generated radially thermal gradience during hydrogel matrix polymerization. With the effective pupil-aperture control, the proposed artificial iris exhibited a variation in the visible-light transmittance from ∼82 % at the ultraviolet light (UV) intensity of 0.5 mW/cm2 to ∼43 % at 3.0 mW/cm2 representing the transparent and colored states, respectively. The switching times for the transitions to the colored and transparent states were 27.42 and 112.25 s, respectively, at a UV intensity of 3.0 mW/cm2, which can be faster under the hydrated state. The artificial iris demonstrated potential in biomedical applications by offering reliable light-adaptive attenuation control through human-like pupil-aperture adjustments.
Databáze: Directory of Open Access Journals