Autor: |
Andres W. Morales, Jinze Du, David J. Warren, Eduardo Fernández-Jover, Gema Martinez-Navarrete, Jean-Marie C. Bouteiller, Douglas C. McCreery, Gianluca Lazzi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-9 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-53284-w |
Popis: |
Abstract Electrical stimulation of the peripheral nervous system (PNS) is becoming increasingly important for the therapeutic treatment of numerous disorders. Thus, as peripheral nerves are increasingly the target of electrical stimulation, it is critical to determine how, and when, electrical stimulation results in anatomical changes in neural tissue. We introduce here a convolutional neural network and support vector machines for cell segmentation and analysis of histological samples of the sciatic nerve of rats stimulated with varying current intensities. We describe the methodologies and present results that highlight the validity of the approach: machine learning enabled highly efficient nerve measurement collection, while multivariate analysis revealed notable changes to nerves’ anatomy, even when subjected to levels of stimulation thought to be safe according to the Shannon current limits. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|