Novel Phenomena of the Hartle–Hawking Wave Function
Autor: | Subeom Kang, Wan-il Park, Dong-han Yeom |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Symmetry, Vol 16, Iss 4, p 444 (2024) |
Druh dokumentu: | article |
ISSN: | 2073-8994 02671417 |
DOI: | 10.3390/sym16040444 |
Popis: | We find a novel phenomenon in the solution to the Wheeler–DeWitt equation by solving numerically the equation assuming O(4)-symmetry and imposing the Hartle–Hawking wave function as a boundary condition. In the slow-roll limit, as expected, the numerical solution gives the most dominant steepest-descent that describes the probability distribution for the initial condition of a universe. The probability is consistent with the Euclidean computations, and the overall shape of the wave function is compatible with analytical approximations, although there exist novel differences in the detailed probability computation. Our approach gives an alternative point of view for the no-boundary wave function from the wave function point of view. Possible interpretations and conceptual issues of this wave function are discussed. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |