Autor: |
Shounak De, Andrzej Pokraka, Marcos Skowronek, Marcus Spradlin, Anastasia Volovich |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of High Energy Physics, Vol 2024, Iss 9, Pp 1-32 (2024) |
Druh dokumentu: |
article |
ISSN: |
1029-8479 |
DOI: |
10.1007/JHEP09(2024)160 |
Popis: |
Abstract Arkani-Hamed and collaborators have recently shown that scattering amplitudes for colored theories can be expressed as integrals over combinatorial objects simply constructed from surfaces decorated by kinematic data. In this paper we extend the curve integral formalism to theories with colored fermionic matter and present a compact formula for the all-loop, all-genus, all-multiplicity amplitude integrand of a colored Yukawa theory. The curve integral formalism makes certain properties of the amplitudes manifest and repackages non-trivial numerators into a single combinatorial object. We also present an efficient formula for L-loop integrated amplitudes in terms of a sum over 2 L combinatorial determinants. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|