Autor: |
Nebojsa Malesevic, Ingrid Svensson, Gunnar Hägglund, Christian Antfolk |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Sensors, Vol 23, Iss 21, p 8955 (2023) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s23218955 |
Popis: |
Measuring human joint dynamics is crucial for understanding how our bodies move and function, providing valuable insights into biomechanics and motor control. Cerebral palsy (CP) is a neurological disorder affecting motor control and posture, leading to diverse gait abnormalities, including altered knee angles. The accurate measurement and analysis of knee angles in individuals with CP are crucial for understanding their gait patterns, assessing treatment outcomes, and guiding interventions. This paper presents a novel multimodal approach that combines inertial measurement unit (IMU) sensors and electromyography (EMG) to measure knee angles in individuals with CP during gait and other daily activities. We discuss the performance of this integrated approach, highlighting the accuracy of IMU sensors in capturing knee joint movements when compared with an optical motion-tracking system and the complementary insights offered by EMG in assessing muscle activation patterns. Moreover, we delve into the technical aspects of the developed device. The presented results show that the angle measurement error falls within the reported values of the state-of-the-art IMU-based knee joint angle measurement devices while enabling a high-quality EMG recording over prolonged periods of time. While the device was designed and developed primarily for measuring knee activity in individuals with CP, its usability extends beyond this specific use-case scenario, making it suitable for applications that involve human joint evaluation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|