Link Prediction in Complex Networks Using Recursive Feature Elimination and Stacking Ensemble Learning

Autor: Tao Wang, Mengyu Jiao, Xiaoxia Wang
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Entropy, Vol 24, Iss 8, p 1124 (2022)
Druh dokumentu: article
ISSN: 24081124
1099-4300
DOI: 10.3390/e24081124
Popis: Link prediction is an important task in the field of network analysis and modeling, and predicts missing links in current networks and new links in future networks. In order to improve the performance of link prediction, we integrate global, local, and quasi-local topological information of networks. Here, a novel stacking ensemble framework is proposed for link prediction in this paper. Our approach employs random forest-based recursive feature elimination to select relevant structural features associated with networks and constructs a two-level stacking ensemble model involving various machine learning methods for link prediction. The lower level is composed of three base classifiers, i.e., logistic regression, gradient boosting decision tree, and XGBoost, and their outputs are then integrated with an XGBoost model in the upper level. Extensive experiments were conducted on six networks. Comparison results show that the proposed method can obtain better prediction results and applicability robustness.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje