Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico
Autor: | Victor Papuico Bernardo, Yolanda Santiago Ayala |
---|---|
Jazyk: | Spanish; Castilian |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Selecciones Matemáticas, Vol 7, Iss 01, Pp 74-96 (2020) |
Druh dokumentu: | article |
ISSN: | 2411-1783 |
DOI: | 10.17268/sel.mat.2020.01.07 |
Popis: | We will begin our study, focusing on the theory of periodic Sobolev spaces, for this we cite [1]. Then, we will prove that the non-homogeneous Boussinesq equation has a local solution and that the solution also continually depends on the initial data and non-homogeneity, we do this intuitively using Fourier theory and in an elegant version introducing families of strongly continuous operators, inspired by the work of Iorio [1], Santiago and Rojas [4], [3] and [2]. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |