Existencia y dependencia continua de solución de la ecuación Boussinesq de onda en espacios de Sobolev periódico

Autor: Victor Papuico Bernardo, Yolanda Santiago Ayala
Jazyk: Spanish; Castilian
Rok vydání: 2020
Předmět:
Zdroj: Selecciones Matemáticas, Vol 7, Iss 01, Pp 74-96 (2020)
Druh dokumentu: article
ISSN: 2411-1783
DOI: 10.17268/sel.mat.2020.01.07
Popis: We will begin our study, focusing on the theory of periodic Sobolev spaces, for this we cite [1]. Then, we will prove that the non-homogeneous Boussinesq equation has a local solution and that the solution also continually depends on the initial data and non-homogeneity, we do this intuitively using Fourier theory and in an elegant version introducing families of strongly continuous operators, inspired by the work of Iorio [1], Santiago and Rojas [4], [3] and [2].
Databáze: Directory of Open Access Journals