Riemann solitons on para-Sasakian geometry
Autor: | K. De, U.C. De |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Karpatsʹkì Matematičnì Publìkacìï, Vol 14, Iss 2, Pp 395-405 (2022) |
Druh dokumentu: | article |
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.14.2.395-405 |
Popis: | The goal of the present article is to investigate almost Riemann soliton and gradient almost Riemann soliton on 3-dimensional para-Sasakian manifolds. At first, it is proved that if $(g, Z,\lambda)$ is an almost Riemann soliton on a para-Sasakian manifold $M^3$, then it reduces to a Riemann soliton and $M^3$ is of constant sectional curvature $-1$, provided the soliton vector $Z$ has constant divergence. Besides these, we prove that if $Z$ is pointwise collinear with the characteristic vector field $\xi$, then $Z$ is a constant multiple of $\xi$ and the manifold is of constant sectional curvature $-1$. Moreover, the almost Riemann soliton is expanding. Furthermore, it is established that if a para-Sasakian manifold $M^3$ admits gradient almost Riemann soliton, then $M^3$ is locally isometric to the hyperbolic space $H^{3}(-1)$. Finally, we construct an example to justify some results of our paper. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |