Fixed Point Results for $F$-Hardy-Rogers Contractions via Mann's Iteration Process in Complete Convex $b$-Metric Spaces
Autor: | Isa Yildirim |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Sahand Communications in Mathematical Analysis, Vol 19, Iss 2, Pp 15-32 (2022) |
Druh dokumentu: | article |
ISSN: | 2322-5807 2423-3900 |
DOI: | 10.22130/scma.2022.528127.929 |
Popis: | In this paper, we give a definition of the $F$-Hardy-Rogers contraction of Nadler type by eliminating the conditions $(F3)$ and $(F4)$. And, we obtain some fixed point theorems for such mappings using Mann's iteration process in complete convex $b$-metric spaces. We also give an example in order to support the main results, which generalize some results in [5,6]. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |