ODAS: Open embeddeD Audition System

Autor: François Grondin, Dominic Létourneau, Cédric Godin, Jean-Samuel Lauzon, Jonathan Vincent, Simon Michaud, Samuel Faucher, François Michaud
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Frontiers in Robotics and AI, Vol 9 (2022)
Druh dokumentu: article
ISSN: 2296-9144
DOI: 10.3389/frobt.2022.854444
Popis: Artificial audition aims at providing hearing capabilities to machines, computers and robots. Existing frameworks in robot audition offer interesting sound source localization, tracking and separation performance, although involve a significant amount of computations that limit their use on robots with embedded computing capabilities. This paper presents ODAS, the Open embeddeD Audition System framework, which includes strategies to reduce the computational load and perform robot audition tasks on low-cost embedded computing systems. It presents key features of ODAS, along with cases illustrating its uses in different robots and artificial audition applications.
Databáze: Directory of Open Access Journals