A Bayesian framework for efficient and accurate variant prediction.

Autor: Dajun Qian, Shuwei Li, Yuan Tian, Jacob W Clifford, Brice A J Sarver, Tina Pesaran, Chia-Ling Gau, Aaron M Elliott, Hsiao-Mei Lu, Mary Helen Black
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: PLoS ONE, Vol 13, Iss 9, p e0203553 (2018)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0203553
Popis: There is a growing need to develop variant prediction tools capable of assessing a wide spectrum of evidence. We present a Bayesian framework that involves aggregating pathogenicity data across multiple in silico scores on a gene-by-gene basis and multiple evidence statistics in both quantitative and qualitative forms, and performs 5-tiered variant classification based on the resulting probability credible interval. When evaluated in 1,161 missense variants, our gene-specific in silico model-based meta-predictor yielded an area under the curve (AUC) of 96.0% and outperformed all other in silico predictors. Multifactorial model analysis incorporating all available evidence yielded 99.7% AUC, with 22.8% predicted as variants of uncertain significance (VUS). Use of only 3 auto-computed evidence statistics yielded 98.6% AUC with 56.0% predicted as VUS, which represented sufficient accuracy to rapidly assign a significant portion of VUS to clinically meaningful classifications. Collectively, our findings support the use of this framework to conduct large-scale variant prioritization using in silico predictors followed by variant prediction and classification with a high degree of predictive accuracy.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje