Reducing residual chlortetracycline in wastewater using a whole-cell biocatalyst

Autor: Minrui Liu, Chuangxin Wang, Xing-e Qi, Shaobo Du, Hongyuhang Ni
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Ecotoxicology and Environmental Safety, Vol 282, Iss , Pp 116717- (2024)
Druh dokumentu: article
ISSN: 0147-6513
DOI: 10.1016/j.ecoenv.2024.116717
Popis: Antibiotic contamination has become an increasingly important environmental problem as a potentially hazardous emergent and recalcitrant pollutant that poses threats to human health. In this study, manganese peroxidase displayed on the outer membrane of Escherichia coli as a whole-cell biocatalyst (E. coli MnP) was expected to degrade antibiotics. The manganese peroxidase activity of the whole-cell biocatalyst was 13.88 ± 0.25 U/L. The typical tetracycline antibiotic chlortetracycline was used to analyze the degradation process. Chlortetracycline at 50 mg/L was effectively transformed via the whole-cell biocatalyst within 18 h. After six repeated batch reactions, the whole-cell biocatalyst retained 87.2 % of the initial activity and retained over 87.46 % of the initial enzyme activity after storage at 25°C for 40 days. Chlortetracycline could be effectively removed from pharmaceutical and livestock wastewater by the whole-cell biocatalyst. Thus, efficient whole-cell biocatalysts are effective alternatives for degrading recalcitrant antibiotics and have potential applications in treating environmental antibiotic contamination.
Databáze: Directory of Open Access Journals