Lipschitz Continuity of the Solution Mapping of Symmetric Cone Complementarity Problems
Autor: | Xin-He Miao, Jein-Shan Chen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Abstract and Applied Analysis, Vol 2012 (2012) |
Druh dokumentu: | article |
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2012/130682 |
Popis: | This paper investigates the Lipschitz continuity of the solution mapping of symmetric cone (linear or nonlinear) complementarity problems (SCLCP or SCCP, resp.) over Euclidean Jordan algebras. We show that if the transformation has uniform Cartesian P-property, then the solution mapping of the SCCP is Lipschitz continuous. Moreover, we establish that the monotonicity of mapping and the Lipschitz continuity of solutions of the SCLCP imply ultra P-property, which is a concept recently developed for linear transformations on Euclidean Jordan algebra. For a Lyapunov transformation, we prove that the strong monotonicity property, the ultra P-property, the Cartesian P-property, and the Lipschitz continuity of the solutions are all equivalent to each other. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |