Refractoriness in sustained visuo-manual control: is the refractory duration intrinsic or does it depend on external system properties?
Autor: | Cornelis van de Kamp, Peter J Gawthrop, Henrik Gollee, Ian D Loram |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | PLoS Computational Biology, Vol 9, Iss 1, p e1002843 (2013) |
Druh dokumentu: | article |
ISSN: | 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1002843 |
Popis: | Researchers have previously adopted the double stimulus paradigm to study refractoriness in human neuromotor control. Currently, refractoriness, such as the Psychological Refractory Period (PRP) has only been quantified in discrete movement conditions. Whether refractoriness and the associated serial ballistic hypothesis generalises to sustained control tasks has remained open for more than sixty years. Recently, a method of analysis has been presented that quantifies refractoriness in sustained control tasks and discriminates intermittent (serial ballistic) from continuous control. Following our recent demonstration that continuous control of an unstable second order system (i.e. balancing a 'virtual' inverted pendulum through a joystick interface) is unnecessary, we ask whether refractoriness of substantial duration (~200 ms) is evident in sustained visual-manual control of external systems. We ask whether the refractory duration (i) is physiologically intrinsic, (ii) depends upon system properties like the order (0, 1(st), and 2(nd)) or stability, (iii) depends upon target jump direction (reversal, same direction). Thirteen participants used discrete movements (zero order system) as well as more sustained control activity (1(st) and 2(nd) order systems) to track unpredictable step-sequence targets. Results show a substantial refractory duration that depends upon system order (250, 350 and 550 ms for 0, 1(st) and 2(nd) order respectively, n=13, p |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |