LRMP: Layer Replication with Mixed Precision for spatial in-memory DNN accelerators

Autor: Abinand Nallathambi, Christin David Bose, Wilfried Haensch, Anand Raghunathan
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Artificial Intelligence, Vol 7 (2024)
Druh dokumentu: article
ISSN: 2624-8212
DOI: 10.3389/frai.2024.1268317
Popis: In-memory computing (IMC) with non-volatile memories (NVMs) has emerged as a promising approach to address the rapidly growing computational demands of Deep Neural Networks (DNNs). Mapping DNN layers spatially onto NVM-based IMC accelerators achieves high degrees of parallelism. However, two challenges that arise in this approach are the highly non-uniform distribution of layer processing times and high area requirements. We propose LRMP, a method to jointly apply layer replication and mixed precision quantization to improve the performance of DNNs when mapped to area-constrained IMC accelerators. LRMP uses a combination of reinforcement learning and mixed integer linear programming to search the replication-quantization design space using a model that is closely informed by the target hardware architecture. Across five DNN benchmarks, LRMP achieves 2.6–9.3× latency and 8–18× throughput improvement at minimal (
Databáze: Directory of Open Access Journals