Human Activity Recognition System For Moderate Performance Microcontroller Using Accelerometer Data And Random Forest Algorithm

Autor: To-Hieu Dao, Hai-Yen Hoang, Van-Nhat Hoang, Duc-Tan Tran, Duc-Nghia Tran
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, Vol 9, Iss 4 (2022)
Druh dokumentu: article
ISSN: 2410-0218
DOI: 10.4108/eetinis.v9i4.2571
Popis: There has been increasing interest in the application of artificial intelligence technologies to improve the quality of support services in healthcare. Some constraints, such as space, infrastructure, and environmental conditions, present challenges with assistive devices for humans. This paper proposed a wearable-based real-time human activity recognition system to monitor daily activities. The classification was done directly on the device, and the results could be checked over the internet. The accelerometer data collection application was developed on the device with a sampling frequency of 20Hz, and the random forest algorithm was embedded in the hardware. To improve the accuracy of the recognition system, a feature vector of 31 dimensions was calculated and used as an input per time window. Besides, the dynamic window method applied by the proposed model allowed us to change the data sampling time (1-3 seconds) and increase the performance of activity classification. The experiment results showed that the proposed system could classify 13 activities with a high accuracy of 99.4%. The rate of correctly classified activities was 96.1%. This work is promising for healthcare because of the convenience and simplicity of wearables.
Databáze: Directory of Open Access Journals