Treg Cells Protect Dopaminergic Neurons against MPP+ Neurotoxicity via CD47-SIRPA Interaction

Autor: Yan Huang, Zhan Liu, Bei-Bei Cao, Yi-Hua Qiu, Yu-Ping Peng
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Cellular Physiology and Biochemistry, Vol 41, Iss 3, Pp 1240-1254 (2017)
Druh dokumentu: article
ISSN: 1015-8987
1421-9778
DOI: 10.1159/000464388
Popis: Background/Aims: Regulatory T (Treg) cells have been associated with neuroprotection by inhibiting microglial activation in animal models of Parkinson's disease (PD), a progressive neurodegenerative disease characterized by dopaminergic neuronal loss in the nigrostriatal system. Herein, we show that Treg cells directly protect dopaminergic neurons against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity via an interaction between the two transmembrane proteins CD47 and signal regulatory protein α (SIRPA). Methods: Primary ventral mesencephalic (VM) cells or VM neurons were pretreated with Treg cells before MPP+ treatment. Transwell co-culture of Treg cells and VM neurons was used to assess the effects of the Treg cytokines transforming growth factor (TGF)-β1 and interleukin (IL)-10 on dopaminergic neurons. Live cell imaging system detected a dynamic contact of Treg cells with VM neurons that were stained with CD47 and SIRPA, respectively. Dopaminergic neuronal loss, which was assessed by the number of tyrosine hydroxylase (TH)-immunoreactive cells, was examined after silencing CD47 in Treg cells or silencing SIRPA in VM neurons. Results: Treg cells prevented MPP+-induced dopaminergic neuronal loss and glial inflammatory responses. TGF-β1 and IL-10 secreted from Treg cells did not significantly prevent MPP+-induced dopaminergic neuronal loss in transwell co-culture of Treg cells and VM neurons. CD47 and SIRPA were expressed by Treg cells and VM neurons, respectively. CD47-labeled Treg cells dynamically contacted with SIRPA-labeled VM neurons. Silencing CD47 gene in Treg cells impaired the ability of Treg cells to protect dopaminergic neurons against MPP+ toxicity. Similarly, SIRPA knockdown in VM neurons reduced the ability of Treg cell neuroprotection. Rac1/Akt signaling pathway in VM neurons was activated by CD47-SIRPA interaction between Treg cells and the neurons. Inhibiting Rac1/Akt signaling in VM neurons compromised Treg cell neuroprotection. Conclusion: Treg cells protect dopaminergic neurons against MPP+ neurotoxicity by a cell-to-cell contact mechanism underlying CD47-SIRPA interaction and Rac1/Akt activation.
Databáze: Directory of Open Access Journals