Autor: |
Khac-Tuan Nguyen, Thai-Hoc Vu, Sunghwan Kim |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
IEEE Access, Vol 10, Pp 91059-91072 (2022) |
Druh dokumentu: |
article |
ISSN: |
2169-3536 |
DOI: |
10.1109/ACCESS.2022.3202300 |
Popis: |
This paper analyzes the performance of an uplink/downlink reconfigurable intelligent surface (RIS)-based wireless system with a multiple-antenna base station (B), where the RIS selection strategy is considered to alleviate the overhead and resources. With the goal of enhancing system performance, we consider maximal-ratio-combining (MRC) and selection-combining (SC) for the uplink transmission and maximum-ratio-transmission (MRT) along with beamforming design for the downlink transmission, where two methods of direct-path beamforming design (DBD) and reflective-path beamforming design (RBD) are proposed. We also quantify the impact of uncertain phase shift (UPS) and optimal phase shift (OPS) alignments. Accordingly, closed-form expressions for outage probability (OP) of each uplink and downlink scenario are derived. Numerical results show that, in the uplink transmission, adopting MRC at the B and OPS at RIS provides the best performance. For small antenna settings, using SC-enabled OPS provides outstanding performance when compared to employing MRC-integrated UPS. In downlink transmission, RBD achieves better performance than that of DBD. Similar to the uplink transmission, employing MRT at the B and OPS at the RIS also attains superior performance when compared to UPS. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|