Autor: |
Jiaxuan Liang, Yi Cheng, Yuqi Su, Shuyue Xiao, Yunquan Song |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 10, Iss 17, p 3095 (2022) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math10173095 |
Popis: |
When the spatial response variables are discrete, the spatial logistic autoregressive model adds an additional network structure to the ordinary logistic regression model to improve the classification accuracy. With the emergence of high-dimensional data in various fields, sparse spatial logistic regression models have attracted a great deal of interest from researchers. For the high-dimensional spatial logistic autoregressive model, in this paper, we propose a variable selection method with for the spatial logistic model. To identify important variables and make predictions, one efficient algorithm is employed to solve the penalized likelihood function. Simulations and a real example show that our methods perform well in a limited sample. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|