Autor: |
Priyanshu Gupta, Sunita Verma, Parthasarathi Mukhopadhyay, R. Bhatla, Swagata Payra |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-19 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-52541-2 |
Popis: |
Abstract The evaluation of Weather Research and Forecasting (WRF) model has been performed for simulating episodic Heat Wave (HW) events of 2015 and 2016 with varied horizontal resolutions of 27 km for the entire India (d01), 9 km for the North West (NW (d02)) and South East (SE (d03)) domain. Study compares the maximum temperature (Tmax) simulated by WRF model, using six different combination of parameterization schemes, with observations from the India Meteorological Department (IMD) during the HW events. Among the six experiments, Exp2 (i.e., combination of WSM6 microphysics (MP) together with radiation parameterization CAM, Yonsei (PBL), NOAH land surface and Grell-3D convective schemes) is found closest to the observations in reproducing the temperature. The model exhibits an uncertainty of ± 2 °C in maximum temperature (Tmax) for both the regions, suggesting regional temperature is influenced by the location and complex orography. Overall, statistical results reveal that the best performance is achieved with Exp2. Further, to understand the dynamics of rising HW intensity, two case studies of HW days along with influencing parameters like Tmax, RH and prevailing wind distribution have been simulated. Model simulated Tmax during 2015 reaches up to 44 °C in NW and SE part of India. In 2016, HW is more prevailing towards NW, while in SE region Tmax reaches upto 34–38 °C with high RH (60–85%). The comparative research made it abundantly evident that these episodic events are unique in terms of duration and geographical spread which can be used to assess the WRF performance for future projections of HW. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|