Autor: |
Antoine Combrisson, Emeline Charon, Mathieu Pinault, Cécile Reynaud, Martine Mayne-L’Hermite |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nanomaterials, Vol 12, Iss 14, p 2338 (2022) |
Druh dokumentu: |
article |
ISSN: |
2079-4991 |
DOI: |
10.3390/nano12142338 |
Popis: |
The present work explores the role of the carbon source content and the Fe/C ratio on the synthesis of vertically aligned carbon nanotubes (VACNTs) by one-step aerosol-assisted CCVD operated at a medium temperature (615 °C) on aluminum substrates. The main objective was to overcome the limitations of VACNT growth, constituting a drawback for applications requiring thick VACNTs. By using acetylene as carbon feedstock and ferrocene as a catalyst precursor, we demonstrate that when acetylene content is reduced to 1.5 vol%, it is possible to grow VACNT carpets up to 700 µm thick while maintaining constant VACNT growth for a long duration (up to 160 min). The carbon conversion yield is significantly improved when the acetylene content reaches 1.5 vol%. The Al surface roughness also influences VACNT growth. An optimum Fe/C ratio of 0.8 wt.% coupled with a low acetylene content gives the highest growth rate (5.4 µm/min) ever reported for a thermal aerosol-assisted CCVD process operated at such a low temperature. The CNT number density can be controlled by varying the Fe/C ratio, enabling high density growth (e.g., 1.3 × 1011 CNT/cm2). |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|