Autor: |
Daniel W. Gould, Min Jet Yap, Vaishali B. Adya, Bram J. J. Slagmolen, Robert L. Ward, David E. McClelland |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Physical Review Research, Vol 3, Iss 4, p 043079 (2021) |
Druh dokumentu: |
article |
ISSN: |
2643-1564 |
DOI: |
10.1103/PhysRevResearch.3.043079 |
Popis: |
We present the digital signal processing of a mutually entangled, two-mode squeezed state using Wiener filtering to maximize the reduction of quantum noise of a single mode. By conditioning this mode, the signal, with its directly detected entangled pair, the witness, we show quantum noise cancellation of 2 dB below that of the signal vacuum level. We present the frequency-dependent digital recovery of squeezed states with Wiener filtering. This filtering is particularly relevant for gravitational wave detectors which will seek to use frequency-dependent squeezed states to improve their reach to the observable universe. We demonstrate the recovery of squeezed states in a configuration that replicates one which would provide optimum sensitivity improvement in a gravitational wave detector under the effects of radiation pressure noise. More generally, this technique may find application in other quantum-limited high-precision experiments such as those using optomechanical cavities. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|