Loop-gas description of the localized-magnon states on the kagome lattice with open boundary conditions

Autor: A. Honecker, J. Richter, J. Schnack, A. Wietek
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Condensed Matter Physics, Vol 23, Iss 4, p 43712 (2021)
Druh dokumentu: article
ISSN: 1607-324X
2224-9079
DOI: 10.5488/CMP.23.43712
Popis: The high-field regime of the spin-s XXZ antiferromagnet on the kagome lattice gives rise to macroscopically degenerate ground states thanks to a completely flat lowest single-magnon band. The corresponding excitations can be localized on loops in real space and have been coined "localized magnons". Thus, the description of the many-body ground states amounts to characterizing the allowed classical loop configurations and eliminating the quantum mechanical linear relations between them. Here, we investigate this loop-gas description on finite kagome lattices with open boundary conditions and compare the results with exact diagonalization for the spin-1/2 XY model on the same lattice. We find that the loop gas provides an exact account of the degenerate ground-state manifold while a hard-hexagon description misses contributions from nested loop configurations. The densest packing of the loops corresponds to a magnon crystal that according to the zero-temperature magnetization curve is a stable ground state of the spin-1/2 XY model in a window of magnetic fields of about 4% of the saturation field just below this saturation field. We also present numerical results for the specific heat obtained by the related methods of thermal pure quantum (TPQ) states and the finite-temperature Lanczos method (FTLM). For a field in the stability range of the magnon crystal, one finds a low-temperature maximum of the specific heat that corresponds to a finite-temperature phase transition into the magnon crystal at low temperatures.
Databáze: Directory of Open Access Journals