Autor: |
Tuomas Vainio, Teemu Mäkelä, Anssi Arkko, Sauli Savolainen, Marko Kangasniemi |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
European Radiology Experimental, Vol 7, Iss 1, Pp 1-13 (2023) |
Druh dokumentu: |
article |
ISSN: |
2509-9280 |
DOI: |
10.1186/s41747-023-00346-9 |
Popis: |
Abstract Background Early diagnosis of the potentially fatal but curable chronic pulmonary embolism (CPE) is challenging. We have developed and investigated a novel convolutional neural network (CNN) model to recognise CPE from CT pulmonary angiograms (CTPA) based on the general vascular morphology in two-dimensional (2D) maximum intensity projection images. Methods A CNN model was trained on a curated subset of a public pulmonary embolism CT dataset (RSPECT) with 755 CTPA studies, including patient-level labels of CPE, acute pulmonary embolism (APE), or no pulmonary embolism. CPE patients with right-to-left-ventricular ratio (RV/LV) |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|